It is a sensible question: What does it feel like to be a bat? Although we can never really know the answer (because we can never be bats), we know that there is an answer. It feels like something to be a bat. Well, at least we think it does. We think bats have consciousness and conscious feelings. On the other hand, it is not a sensible question to ask what it feels like to be brick or a table. It doesn’t feel like anything to be an inanimate object.
Tag Archives: relativity
Debates and Discussions on http://www.anti-relativity.com/forum.
(My writings only.)
Bye Bye Einstein
Starting from his miraculous year of 1905, Einstein has dominated physics with his astonishing insights on space and time, and on mass and gravity. True, there have been other physicists who, with their own brilliance, have shaped and moved modern physics in directions that even Einstein couldn’t have foreseen; and I don’t mean to trivialize neither their intellectual achievements nor our giant leaps in physics and technology. But all of modern physics, even the bizarre reality of quantum mechanics, which Einstein himself couldn’t quite come to terms with, is built on his insights. It is on his shoulders that those who came after him stood for over a century now.
One of the brighter ones among those who came after Einstein cautioned us to guard against our blind faith in the infallibility of old masters. Taking my cue from that insight, I, for one, think that Einstein’s century is behind us now. I know, coming from a non-practicing physicist, who sold his soul to the finance industry, this declaration sounds crazy. Delusional even. But I do have my reasons to see Einstein’s ideas go.
Let’s start with this picture of a dot flying along a straight line (on the ceiling, so to speak). You are standing at the centre of the line in the bottom (on the floor, that is). If the dot was moving faster than light, how would you see it? Well, you wouldn’t see anything at all until the first ray of light from the dot reaches you. As the animation shows, the first ray will reach you when the dot is somewhere almost directly above you. The next rays you would see actually come from two different points in the line of flight of the dot — one before the first point, and one after. Thus, the way you would see it is, incredible as it may seem to you at first, as one dot appearing out of nowhere and then splitting and moving rather symmetrically away from that point. (It is just that the dot is flying so fast that by the time you get to see it, it is already gone past you, and the rays from both behind and ahead reach you at the same instant in time.Hope that statement makes it clearer, rather than more confusing.).
Why did I start with this animation of how the illusion of a symmetric object can happen? Well, we see a lot of active symmetric structures in the universe. For instance, look at this picture of Cygnus A. There is a “core” from which seem to emanate “features” that float away to the “lobes.” Doesn’t it look remarkably similar to what we would see based on the animation above? There are other examples in which some feature points or knots seem to move away from the core where they first appear at. We could come up with a clever model based on superluminality and how it would create illusionary symmetric objects in the heavens. We could, but nobody would believe us — because of Einstein. I know this — I tried to get my old physicist friends to consider this model. The response is always some variant of this, “Interesting, but it cannot work. It violates Lorentz invariance, doesn’t it?” LV being physics talk for Einstein’s insistence that nothing should go faster than light. Now that neutrinos can violate LV, why not me?
Of course, if it was only a qualitative agreement between symmetric shapes and superluminal celestial objects, my physics friends are right in ignoring me. There is much more. The lobes in Cygnus A, for instance, emit radiation in the radio frequency range. In fact, the sky as seen from a radio telescope looks materially different from what we see from an optical telescope. I could show that the spectral evolution of the radiation from this superluminal object fitted nicely with AGNs and another class of astrophysical phenomena, hitherto considered unrelated, called gamma ray bursts. In fact, I managed to publish this model a while ago under the title, “Are Radio Sources and Gamma Ray Bursts Luminal Booms?“.
You see, I need superluminality. Einstein being wrong is a pre-requisite of my being right. So it is the most respected scientist ever vs. yours faithfully, a blogger of the unreal kind. You do the math. 🙂
Such long odds, however, have never discouraged me, and I always rush in where the wiser angels fear to tread. So let me point out a couple of inconsistencies in SR. The derivation of the theory starts off by pointing out the effects of light travel time in time measurements. And later on in the theory, the distortions due to light travel time effects become part of the properties of space and time. (In fact, light travel time effects will make it impossible to have a superluminal dot on a ceiling, as in my animation above — not even a virtual one, where you take a laser pointer and turn it fast enough that the laser dot on the ceiling would move faster than light. It won’t.) But, as the theory is understood and practiced now, the light travel time effects are to be applied on top of the space and time distortions (which were due to the light travel time effects to begin with)! Physicists turn a blind eye to this glaring inconstancy because SR “works” — as I made very clear in my previous post in this series.
Another philosophical problem with the theory is that it is not testable. I know, I alluded to a large body of proof in its favor, but fundamentally, the special theory of relativity makes predictions about a uniformly moving frame of reference in the absence of gravity. There is no such thing. Even if there was, in order to verify the predictions (that a moving clock runs slower as in the twin paradox, for instance), you have to have acceleration somewhere in the verification process. Two clocks will have to come back to the same point to compare time. The moment you do that, at least one of the clocks has accelerated, and the proponents of the theory would say, “Ah, there is no problem here, the symmetry between the clocks is broken because of the acceleration.” People have argued back and forth about such thought experiments for an entire century, so I don’t want to get into it. I just want to point out that theory by itself is untestable, which should also mean that it is unprovable. Now that there is direct experimental evidence against the theory, may be people will take a closer look at these inconsistencies and decide that it is time to say bye-bye to Einstein.
Why not Discard Special Relativity?
Nothing would satisfy my anarchical mind more than to see the Special Theory of Relativity (SR) come tumbling down. In fact, I believe that there are compelling reasons to consider SR inaccurate, if not actually wrong, although the physics community would have none of that. I will list my misgivings vis-a-vis SR and present my case against it as the last post in this series, but in this one, I would like to explore why it is so difficult to toss SR out the window.
The special theory of relativity is an extremely well-tested theory. Despite my personal reservations about it, the body of proof for the validity of SR is really enormous and the theory has stood the test of time — at least so far. But it is the integration of SR into the rest of modern physics that makes it all but impossible to write it off as a failed theory. In experimental high energy physics, for instance, we compute the rest mass of a particle as its identifying statistical signature. The way it works is this: in order to discover a heavy particle, you first detect its daughter particles (decay products, that is), measure their energies and momenta, add them up (as “4-vectors”), and compute the invariant mass of the system as the modulus of the aggregate energy-momentum vector. In accordance with SR, the invariant mass is the rest mass of the parent particle. You do this for many thousands of times and make a distribution (a “histogram”) and detect any statistically significant excess at any mass. Such an excess is the signature of the parent particle at that mass.
Almost every one of the particles in the particle data book that we know and love is detected using some variant of this method. So the whole Standard Model of particle physics is built on SR. In fact, almost all of modern physics (physics of the 20th century) is built on it. On the theory side, in the thirties, Dirac derived a framework to describe electrons. It combined SR and quantum mechanics in an elegant framework and predicted the existence of positrons, which bore out later on. Although considered incomplete because of its lack of sound physical backdrop, this “second quantization” and its subsequent experimental verification can be rightly seen as evidence for the rightness of SR.
Feynman took it further and completed the quantum electrodynamics (QED), which has been the most rigorously tested theory ever. To digress a bit, Feynman was once being shown around at CERN, and the guide (probably a prominent physicist himself) was explaining the experiments, their objectives etc. Then the guide suddenly remembered who he was talking to; after all, most of the CERN experiments were based on Feynman’s QED. Embarrassed, he said, “Of course, Dr. Feynman, you know all this. These are all to verify your predictions.” Feynman quipped, “Why, you don’t trust me?!” To get back to my point and reiterate it, the whole edifice of the standard model of particle physics is built on top of SR. Its success alone is enough to make it impossible for modern physics to discard SR.
So, if you take away SR, you don’t have the Standard Model and QED, and you don’t know how accelerator experiments and nuclear bombs work. The fact that they do is proof enough for the validity of SR, because the alternative (that we managed to build all these things without really knowing how they work) is just too weird. It’s not just the exotic (nuclear weaponry and CERN experiments), but the mundane that should convince us. Fluorescent lighting, laser pointers, LED, computers, mobile phones, GPS navigators, iPads — in short, all of modern technology is, in some way, a confirmation of SR.
So the OPERA result on observed superluminalily has to be wrong. But I would like it to be right. And I will explain why in my next post. Why everything we accept as a verification of SR could be a case of mass delusion — almost literally. Stay tuned!
What is Unreal Blog?
Tell us a little about why you started your blog, and what keeps you motivated about it.
As my writings started appearing in different magazines and newspapers as regular columns, I wanted to collect them in one place — as an anthology of the internet kind, as it were. That’s how my blog was born. The motivation to continue blogging comes from the memory of how my first book, The Unreal Universe, took shape out of the random notes I started writing on scrap books. I believe the ideas that cross anybody’s mind often get forgotten and lost unless they are written down. A blog is a convenient platform to put them down. And, since the blog is rather public, you take some care and effort to express yourself well.
Do you have any plans for the blog in the future?
I will keep blogging, roughly at the rate of one post a week or so. I don’t have any big plans for the blog per se, but I do have some other Internet ideas that may spring from my blog.
Philosophy is usually seen as a very high concept, intellectual subject. Do you think that it can have a greater impact in the world at large?
This is a question that troubled me for a while. And I wrote a post on it, which may answer it to the best of my ability. To repeat myself a bit, philosophy is merely a description of whatever intellectual pursuits that we indulge in. It is just that we don’t often see it that way. For instance, if you are doing physics, you think that you are quite far removed from philosophy. The philosophical spins that you put on a theory in physics is mostly an afterthought, it is believed. But there are instances where you can actually apply philosophy to solve problems in physics, and come up with new theories. This indeed is the theme of my book, The Unreal Universe. It asks the question, if some object flew by faster than the speed of light, what would it look like? With the recent discovery that solid matter does travel faster than light, I feel vindicated and look forward to further developments in physics.
Do you think many college students are attracted to philosophy? What would make them choose to major in it?
In today’s world, I am afraid philosophy is supremely irrelevant. So it may be difficult to get our youngsters interested in philosophy. I feel that one can hope to improve its relevance by pointing out the interconnections between whatever it is that we do and the intellectual aspects behind it. Would that make them choose to major in it? In a world driven by excesses, it may not be enough. Then again, it is world where articulation is often mistaken for accomplishments. Perhaps philosophy can help you articulate better, sound really cool and impress that girl you have been after — to put it crudely.
More seriously, though, what I said about the irrelevance of philosophy can be said about, say, physics as well, despite the fact that it gives you computers and iPads. For instance, when Copernicus came up with the notion that the earth is revolving around the sun rather than the other way round, profound though this revelation was, in what way did it change our daily life? Do you really have to know this piece of information to live your life? This irrelevance of such profound facts and theories bothered scientists like Richard Feynman.
What kind of advice or recommendations would you give to someone who is interested in philosophy, and who would like to start learning more about it?
I started my path toward philosophy via physics. I think philosophy by itself is too detached from anything else that you cannot really start with it. You have to find your way toward it from whatever your work entails, and then expand from there. At least, that’s how I did it, and that way made it very real. When you ask yourself a question like what is space (so that you can understand what it means to say that space contracts, for instance), the answers you get are very relevant. They are not some philosophical gibberish. I think similar paths to relevance exist in all fields. See for example how Pirsig brought out the notion of quality in his work, not as an abstract definition, but as an all-consuming (and eventually dangerous) obsession.
In my view, philosophy is a wrapper around multiple silos of human endeavor. It helps you see the links among seemingly unrelated fields, such as cognitive neuroscience and special relativity. Of what practical use is this knowledge, I cannot tell you. Then again, of what practical use is life itself?
The Unreal Universe
We know that our universe is a bit unreal. The stars we see in the night sky, for instance, are not really there. They may have moved or even died by the time we get to see them. It takes light time to travel from the distant stars and galaxies to reach us. We know of this delay. The sun that we see now is already eight minutes old by the time we see it, which is not a big deal. If we want to know what is going on at the sun right now, all we have to do is to wait for eight minutes. Nonetheless, we do have to “correct” for the delay in our perception due to the finite speed of light before we can trust what we see.
Now, this effect raises an interesting question — what is the “real” thing that we see? If seeing is believing, the stuff that we see should be the real thing. Then again, we know of the light travel time effect. So we should correct what we see before believing it. What then does “seeing” mean? When we say we see something, what do we really mean?
Seeing involves light, obviously. It is the finite (albeit very high) speed of light influences and distorts the way we see things, like the delay in seeing objects like stars. What is surprising (and seldom highlighted) is that when it comes to seeing moving objects, we cannot back-calculate the same way we take out the delay in seeing the sun. If we see a celestial body moving at an improbably high speed, we cannot figure out how fast and in what direction it is “really” moving without making further assumptions. One way of handling this difficulty is to ascribe the distortions in our perception to the fundamental properties of the arena of physics — space and time. Another course of action is to accept the disconnection between our perception and the underlying “reality” and deal with it in some way.
This disconnect between what we see and what is out there is not unknown to many philosophical schools of thought. Phenomenalism, for instance, holds the view that space and time are not objective realities. They are merely the medium of our perception. All the phenomena that happen in space and time are merely bundles of our perception. In other words, space and time are cognitive constructs arising from perception. Thus, all the physical properties that we ascribe to space and time can only apply to the phenomenal reality (the reality as we sense it). The noumenal reality (which holds the physical causes of our perception), by contrast, remains beyond our cognitive reach.
One, almost accidental, difficulty in redefining the effects of the finite speed of light as the properties of space and time is that any effect that we do understand gets instantly relegated to the realm of optical illusions. For instance, the eight-minute delay in seeing the sun, because we can readily understand it and disassociate it from our perception using simple arithmetic, is considered a mere optical illusion. However, the distortions in our perception of fast moving objects, although originating from the same source are considered a property of space and time because they are more complex. At some point, we have to come to terms with the fact that when it comes to seeing the universe, there is no such thing as an optical illusion, which is probably what Goethe pointed out when he said, “Optical illusion is optical truth.”
The distinction (or lack thereof) between optical illusion and truth is one of the oldest debates in philosophy. After all, it is about the distinction between knowledge and reality. Knowledge is considered our view about something that, in reality, is “actually the case.” In other words, knowledge is a reflection, or a mental image of something external. In this picture, the external reality goes through a process of becoming our knowledge, which includes perception, cognitive activities, and the exercise of pure reason. This is the picture that physics has come to accept. While acknowledging that our perception may be imperfect, physics assumes that we can get closer and closer to the external reality through increasingly finer experimentation, and, more importantly, through better theorization. The Special and General Theories of Relativity are examples of brilliant applications of this view of reality where simple physical principles are relentlessly pursued using the formidable machine of pure reason to their logically inevitable conclusions.
But there is another, competing view of knowledge and reality that has been around for a long time. This is the view that regards perceived reality as an internal cognitive representation of our sensory inputs. In this view, knowledge and perceived reality are both internal cognitive constructs, although we have come to think of them as separate. What is external is not the reality as we perceive it, but an unknowable entity giving rise to the physical causes behind sensory inputs. In this school of thought, we build our reality in two, often overlapping, steps. The first step consists of the process of sensing, and the second one is that of cognitive and logical reasoning. We can apply this view of reality and knowledge to science, but in order do so, we have to guess the nature of the absolute reality, unknowable as it is.
The ramifications of these two different philosophical stances described above are tremendous. Since modern physics has embraced a non-phenomenalistic view of space and time, it finds itself at odds with that branch of philosophy. This chasm between philosophy and physics has grown to such a degree that the Nobel prize winning physicist, Steven Weinberg, wondered (in his book “Dreams of a Final Theory”) why the contribution from philosophy to physics have been so surprisingly small. It also prompts philosophers to make statements like, “Whether ‘noumenal reality causes phenomenal reality’ or whether ‘noumenal reality is independent of our sensing it’ or whether ‘we sense noumenal reality,’ the problem remains that the concept of noumenal reality is a totally redundant concept for the analysis of science.”
From the perspective of cognitive neuroscience, everything we see, sense, feel and think is the result of the neuronal interconnections in our brain and the tiny electrical signals in them. This view must be right. What else is there? All our thoughts and worries, knowledge and beliefs, ego and reality, life and death — everything is merely neuronal firings in the one and half kilograms of gooey, grey material that we call our brain. There is nothing else. Nothing!
In fact, this view of reality in neuroscience is an exact echo of phenomenalism, which considers everything a bundle of perception or mental constructs. Space and time are also cognitive constructs in our brain, like everything else. They are mental pictures our brains concoct out of the sensory inputs that our senses receive. Generated from our sensory perception and fabricated by our cognitive process, the space-time continuum is the arena of physics. Of all our senses, sight is by far the dominant one. The sensory input to sight is light. In a space created by the brain out of the light falling on our retinas (or on the photo sensors of the Hubble telescope), is it a surprise that nothing can travel faster than light?
This philosophical stance is the basis of my book, The Unreal Universe, which explores the common threads binding physics and philosophy. Such philosophical musings usually get a bad rap from us physicists. To physicists, philosophy is an entirely different field, another silo of knowledge, which holds no relevance to their endeavors. We need to change this belief and appreciate the overlap among different knowledge silos. It is in this overlap that we can expect to find great breakthroughs in human thought.
The twist to this story of light and reality is that we seem to have known all this for a long time. Classical philosophical schools seem to have thought along lines very similar to Einstein’s reasonings. The role of light in creating our reality or universe is at the heart of Western religious thinking. A universe devoid of light is not simply a world where you have switched off the lights. It is indeed a universe devoid of itself, a universe that doesn’t exist. It is in this context that we have to understand the wisdom behind the statement that “the earth was without form, and void” until God caused light to be, by saying “Let there be light.”
The Quran also says, “Allah is the light of the heavens and the earth,” which is mirrored in one of the ancient Hindu writings: “Lead me from darkness to light, lead me from the unreal to the real.” The role of light in taking us from the unreal void (the nothingness) to a reality was indeed understood for a long, long time. Is it possible that the ancient saints and prophets knew things that we are only now beginning to uncover with all our supposed advances in knowledge?
I know I may be rushing in where angels fear to tread, for reinterpreting the scriptures is a dangerous game. Such alien interpretations are seldom welcome in the theological circles. But I seek refuge in the fact that I am looking for concurrence in the metaphysical views of spiritual philosophies, without diminishing their mystical and theological value.
The parallels between the noumenal-phenomenal distinction in phenomenalism and the Brahman-Maya distinction in Advaita are hard to ignore. This time-tested wisdom on the nature of reality from the repertoire of spirituality is now being reinvented in modern neuroscience, which treats reality as a cognitive representation created by the brain. The brain uses the sensory inputs, memory, consciousness, and even language as ingredients in concocting our sense of reality. This view of reality, however, is something physics is yet to come to terms with. But to the extent that its arena (space and time) is a part of reality, physics is not immune to philosophy.
As we push the boundaries of our knowledge further and further, we are beginning to discover hitherto unsuspected and often surprising interconnections between different branches of human efforts. In the final analysis, how can the diverse domains of our knowledge be independent of each other when all our knowledge resides in our brain? Knowledge is a cognitive representation of our experiences. But then, so is reality; it is a cognitive representation of our sensory inputs. It is a fallacy to think that knowledge is our internal representation of an external reality, and therefore distinct from it. Knowledge and reality are both internal cognitive constructs, although we have come to think of them as separate.
Recognizing and making use of the interconnections among the different domains of human endeavor may be the catalyst for the next breakthrough in our collective wisdom that we have been waiting for.
Half a Bucket of Water
We all see and feel space, but what is it really? Space is one of those fundamental things that a philosopher may consider an “intuition.” When philosophers look at anything, they get a bit technical. Is space relational, as in, defined in terms of relations between objects? A relational entity is like your family — you have your parents, siblings, spouse, kids etc. forming what you consider your family. But your family itself is not a physical entity, but only a collection of relationships. Is space also something like that? Or is it more like a physical container where objects reside and do their thing?
You may consider the distinction between the two just another one of those philosophical hairsplittings, but it really is not. What space is, and even what kind of entity space is, has enormous implications in physics. For instance, if it is relational in nature, then in the absence of matter, there is no space. Much like in the absence of any family members, you have no family. On the other hand, if it is a container-like entity, the space exists even if you take away all matter, waiting for some matter to appear.
So what, you ask? Well, let’s take half a bucket of water and spin it around. Once the water within catches on, its surface will form a parabolic shape — you know, centrifugal force, gravity, surface tension and all that. Now, stop the bucket, and spin the whole universe around it instead. I know, it is more difficult. But imagine you are doing it. Will the water surface be parabolic? I think it will be, because there is not much difference between the bucket turning or the whole universe spinning around it.
Now, let’s imagine that we empty the universe. There is nothing but this half-full bucket. Now it spins around. What happens to the water surface? If space is relational, in the absence of the universe, there is no space outside the bucket and there is no way to know that it is spinning. Water surface should be flat. (In fact, it should be spherical, but ignore that for a second.) And if space is container-like, the spinning bucket should result in a parabolic surface.
Of course, we have no way of knowing which way it is going to be because we have no way of emptying the universe and spinning a bucket. But that doesn’t prevent us from guessing the nature of space and building theories based on it. Newton’s space is container-like, while at their heart, Einstein’s theories have a relational notion of space.
So, you see, philosophy does matter.
The Unreal Universe – Reviewed
The Straits Times
The national newspaper of Singapore, the Straits Times, lauds the readable and conversation style used in The Unreal Universe and recommends it to anybody who wants to learn about life, the universe and everything.
Wendy Lochner
Calling The Unreal Universe a good read, Wendy says, “It’s well written, very clear to follow for the nonspecialist.”
Bobbie Christmas
Describing The Unreal Universe as “such an insightful and intelligent book,” Bobbie says, “A book for thinking laymen, this readable, thought-provoking work offers a new perspective on our definition of reality.”
M. S. Chandramouli
M. S. Chandramouli graduated from the Indian Institute of Technology, Madras in 1966 and subsequently did his MBA from the Indian Institute of Management, Ahmedabad. After an executive career in India and Europe covering some 28 years he founded Surya International in Belgium through which he now offers business development and industrial marketing services.
Here is what he says about The Unreal Universe:
“The book has a very pleasing layout, with the right size of font and line spacing and correct content density. Great effort for a self-published book!”
“The impact of the book is kaleidoscopic. The patterns in one reader’s mind (mine, that is) shifted and re-arranged themselves with a ‘rustling noise’ more than once.””The author’s writing style is remarkably equidistant from the turgid prose of Indians writing on philosophy or religion and the we-know-it-all style of Western authors on the philosophy of science.”
“There is a sort of cosmic, background ‘Eureka!’ that seems to suffuse the entire book. Its central thesis about the difference between perceived reality and absolute reality is an idea waiting to bloom in a million minds.”
“The test on the ‘Emotionality of Faith,’ Page 171, was remarkably prescient; it worked for me!”
“I am not sure that the first part, which is essentially descriptive and philosophical, sits comfortably with the second part with its tightly-argued physics; if and when the author is on his way to winning the argument, he may want to look at three different categories of readers – the lay but intelligent ones who need a degree of ‘translation,’ the non-physicist specialist, and the physicist philosophers. Market segmentation is the key to success.”
“I think this book needs to be read widely. I am making a small attempt at plugging it by copying this to my close friends.”
Steven Bryant
Steven is a Vice President of Consulting Services for Primitive Logic, a premier Regional Systems Integrator located in San Francisco, California. He is the author of The Relativity Challenge.
“Manoj views science as just one element in the picture of life. Science does not define life. But life colors how we understand science. He challenges all readers to rethink their believe systems, to question what they thought was real, to ask “why”? He asks us to take off our “rose colored glasses” and unlock new ways of experiencing and understanding life. This thought provoking work should be required reading to anyone embarking on a new scientific journey.”
“Manoj’s treatment of time is very thought provoking. While each of our other senses – sight, sound, smell, taste and touch – are multi-dimensional, time appears to be single dimensional. Understanding the interplay of time with our other senses is a very interesting puzzle. It also opens to door to the existence possibilities of other phenomena beyond our know sensory range.”
“Manoj’s conveys a deep understanding of the interaction of our physics, human belief systems, perceptions, experiences, and even our languages, on how we approach scientific discovery. His work will challenge you to rethink what you think you know is true.”
“Manoj offers a unique perspective on science, perception, and reality. The realization that science does not lead to perception, but perception leads to science, is key to understanding that all scientific “facts” are open for re-exploration. This book is extremely thought provoking and challenges each reader the question their own beliefs.”
“Manoj approaches physics from a holistic perspective. Physics does not occur in isolation, but is defined in terms of our experiences – both scientific and spiritual. As you explore his book you’ll challenge your own beliefs and expand your horizons.”
Blogs and Found Online
From the Blog Through The Looking Glass
“This book is considerably different from other books in its approach to philosophy and physics. It contains numerous practical examples on the profound implications of our philosophical viewpoint on physics, specifically astrophysics and particle physics. Each demonstration comes with a mathematical appendix, which includes a more rigorous derivation and further explanation. The book even reins in diverse branches of philosophy (e.g. thinking from both the East and the West, and both the classical period and modern contemporary philosophy). And it is gratifying to know that all the mathematics and physics used in the book are very understandable, and thankfully not graduate level. That helps to make it much easier to appreciate the book.”
From the Hub Pages
Calling itself “An Honest Review of The Unreal Universe,” this review looks like the one used in the Straits Times.
I got a few reviews from my readers through email and online forums. I have compiled them as anonymous reviews in the next page of this post.
Click on the link below to visit the second page.
The Big Bang Theory – Part II
After reading a paper by Ashtekar on quantum gravity and thinking about it, I realized what my trouble with the Big Bang theory was. It is more on the fundamental assumptions than the details. I thought I would summarize my thoughts here, more for my own benefit than anybody else’s.
Classical theories (including SR and QM) treat space as continuous nothingness; hence the term space-time continuum. In this view, objects exist in continuous space and interact with each other in continuous time.
Although this notion of space time continuum is intuitively appealing, it is, at best, incomplete. Consider, for instance, a spinning body in empty space. It is expected to experience centrifugal force. Now imagine that the body is stationary and the whole space is rotating around it. Will it experience any centrifugal force?
It is hard to see why there would be any centrifugal force if space is empty nothingness.
GR introduced a paradigm shift by encoding gravity into space-time thereby making it dynamic in nature, rather than empty nothingness. Thus, mass gets enmeshed in space (and time), space becomes synonymous with the universe, and the spinning body question becomes easy to answer. Yes, it will experience centrifugal force if it is the universe that is rotating around it because it is equivalent to the body spinning. And, no, it won’t, if it is in just empty space. But “empty space” doesn’t exist. In the absence of mass, there is no space-time geometry.
So, naturally, before the Big Bang (if there was one), there couldn’t be any space, nor indeed could there be any “before.” Note, however, that the Ashtekar paper doesn’t clearly state why there had to be a big bang. The closest it gets is that the necessity of BB arises from the encoding of gravity in space-time in GR. Despite this encoding of gravity and thereby rendering space-time dynamic, GR still treats space-time as a smooth continuum — a flaw, according to Ashtekar, that QG will rectify.
Now, if we accept that the universe started out with a big bang (and from a small region), we have to account for quantum effects. Space-time has to be quantized and the only right way to do it would be through quantum gravity. Through QG, we expect to avoid the Big Bang singularity of GR, the same way QM solved the unbounded ground state energy problem in the hydrogen atom.
What I described above is what I understand to be the physical arguments behind modern cosmology. The rest is a mathematical edifice built on top of this physical (or indeed philosophical) foundation. If you have no strong views on the philosophical foundation (or if your views are consistent with it), you can accept BB with no difficulty. Unfortunately, I do have differing views.
My views revolve around the following questions.
- What is space?
- Why is the speed of light important in it?
- Where does the Heisenberg Uncertainty Principle come from?
These posts may sound like useless philosophical musings, but I do have some concrete (and in my opinion, important) results, listed below.
- Are GRBs and Radio Sources Luminal Booms? (An article published in IJMP-D, which became one of the “Top Accessed Articles” of the journal. :-))
- Light Travel Time Effects and Cosmological Features (Trying to get this one published.)
There is much more work to be done on this front. But for the next couple of years, with my new book contract and pressures from my quant career, I will not have enough time to study GR and cosmology with the seriousness they deserve. I hope to get back to them once the current phase of spreading myself too thin passes.
Light Travel Time Effects and Cosmological Features
This unpublished article is a sequel to my earlier paper (also posted here as “Are Radio Sources and Gamma Ray Bursts Luminal Booms?“). This blog version contains the abstract, introduction and conclusions. The full version of the article is available as a PDF file.
.
Abstract
Light travel time effects (LTT) are an optical manifestation of the finite speed of light. They can also be considered perceptual constraints to the cognitive picture of space and time. Based on this interpretation of LTT effects, we recently presented a new hypothetical model for the temporal and spatial variation of the spectrum of Gamma Ray Bursts (GRB) and radio sources. In this article, we take the analysis further and show that LTT effects can provide a good framework to describe such cosmological features as the redshift observation of an expanding universe, and the cosmic microwave background radiation. The unification of these seemingly distinct phenomena at vastly different length and time scales, along with its conceptual simplicity, can be regarded as indicators of the curious usefulness of this framework, if not its validity.
Introduction
The finite speed of light plays an important part in how we perceive distance and speed. This fact should hardly come as a surprise because we do know that things are not as we see them. The sun that we see, for instance, is already eight minutes old by the time we see it. This delay is trivial; if we want to know what is going on at the sun now, all we have to do is to wait for eight minutes. We, nonetheless, have to “correct” for this distortion in our perception due to the finite speed of light before we can trust what we see.
What is surprising (and seldom highlighted) is that when it comes to sensing motion, we cannot back-calculate the same way we take out the delay in seeing the sun. If we see a celestial body moving at an improbably high speed, we cannot figure out how fast and in what direction it is “really” moving without making further assumptions. One way of handling this difficulty is to ascribe the distortions in our perception of motion to the fundamental properties of the arena of physics — space and time. Another course of action is to accept the disconnection between our perception and the underlying “reality” and deal with it in some way.
Exploring the second option, we assume an underlying reality that gives rise to our perceived picture. We further model this underlying reality as obeying classical mechanics, and work out our perceived picture through the apparatus of perception. In other words, we do not attribute the manifestations of the finite speed of light to the properties of the underlying reality. Instead, we work out our perceived picture that this model predicts and verify whether the properties we do observe can originate from this perceptual constraint.
Space, the objects in it, and their motion are, by and large, the product of optical perception. One tends to take it for granted that perception arises from reality as one perceives it. In this article, we take the position that what we perceive is an incomplete or distorted picture of an underlying reality. Further, we are trying out classical mechanics for the the underlying reality (for which we use terms like absolute, noumenal or physical reality) that does cause our perception to see if it fits with our perceived picture (which we may refer to as sensed or phenomenal reality).
Note that we are not implying that the manifestations of perception are mere delusions. They are not; they are indeed part of our sensed reality because reality is an end result of perception. This insight may be behind Goethe’s famous statement, “Optical illusion is optical truth.”
We applied this line of thinking to a physics problem recently. We looked at the spectral evolution of a GRB and found it to be remarkably similar to that in a sonic boom. Using this fact, we presented a model for GRB as our perception of a “luminal” boom, with the understanding that it is our perceived picture of reality that obeys Lorentz invariance and our model for the underlying reality (causing the perceived picture) may violate relativistic physics. The striking agreement between the model and the observed features, however, extended beyond GRBs to symmetric radio sources, which can also be regarded as perceptual effects of hypothetical luminal booms.
In this article, we look at other implications of the model. We start with the similarities between the light travel time (LTT) effects and the coordinate transformation in Special Relativity (SR). These similarities are hardly surprising because SR is derived partly based on LTT effects. We then propose an interpretation of SR as a formalization of LTT effects and study a few observed cosmological phenomena in the light of this interpretation.
Similarities between Light Travel Time Effects and SR
Special relativity seeks a linear coordinate transformation between coordinate systems in motion with respect to each other. We can trace the origin of linearity to a hidden assumption on the nature of space and time built into SR, as stated by Einstein: “In the first place it is clear that the equations must be linear on account of the properties of homogeneity which we attribute to space and time.” Because of this assumption of linearity, the original derivation of the transformation equations ignores the asymmetry between approaching and receding objects. Both approaching and receding objects can be described by two coordinate systems that are always receding from each other. For instance, if a system is moving with respect to another system along the positive X axis of , then an object at rest in at a positive is receding while another object at a negative is approaching an observer at the origin of .
The coordinate transformation in Einstein’s original paper is derived, in part, a manifestation of the light travel time (LTT) effects and the consequence of imposing the constancy of light speed in all inertial frames. This is most obvious in the first thought experiment, where observers moving with a rod find their clocks not synchronized due to the difference in light travel times along the length of the rod. However, in the current interpretation of SR, the coordinate transformation is considered a basic property of space and time.
One difficulty that arises from this interpretation of SR is that the definition of the relative velocity between the two inertial frames becomes ambiguous. If it is the velocity of the moving frame as measured by the observer, then the observed superluminal motion in radio jets starting from the core region becomes a violation of SR. If it is a velocity that we have to deduce by considering LT effects, then we have to employ the extra ad-hoc assumption that superluminality is forbidden. These difficulties suggest that it may be better to disentangle the light travel time effects from the rest of SR.
In this section, we will consider space and time as a part of the cognitive model created by the brain, and argue that special relativity applies to the cognitive model. The absolute reality (of which the SR-like space-time is our perception) does not have to obey the restrictions of SR. In particular, objects are not restricted to subluminal speeds, but they may appear to us as though they are restricted to subluminal speeds in our perception of space and time. If we disentangle LTT effects from the rest of SR, we can understand a wide array of phenomena, as we shall see in this article.
Unlike SR, considerations based on LTT effects result in intrinsically different set of transformation laws for objects approaching an observer and those receding from him. More generally, the transformation depends on the angle between the velocity of the object and the observer’s line of sight. Since the transformation equations based on LTT effects treat approaching and receding objects asymmetrically, they provide a natural solution to the twin paradox, for instance.
Conclusions
Because space and time are a part of a reality created out of light inputs to our eyes, some of their properties are manifestations of LTT effects, especially on our perception of motion. The absolute, physical reality presumably generating the light inputs does not have to obey the properties we ascribe to our perceived space and time.
We showed that LTT effects are qualitatively identical to those of SR, noting that SR only considers frames of reference receding from each other. This similarity is not surprising because the coordinate transformation in SR is derived based partly on LTT effects, and partly on the assumption that light travels at the same speed with respect to all inertial frames. In treating it as a manifestation of LTT, we did not address the primary motivation of SR, which is a covariant formulation of Maxwell’s equations. It may be possible to disentangle the covariance of electrodynamics from the coordinate transformation, although it is not attempted in this article.
Unlike SR, LTT effects are asymmetric. This asymmetry provides a resolution to the twin paradox and an interpretation of the assumed causality violations associated with superluminality. Furthermore, the perception of superluminality is modulated by LTT effects, and explains ray bursts and symmetric jets. As we showed in the article, perception of superluminal motion also holds an explanation for cosmological phenomena like the expansion of the universe and cosmic microwave background radiation. LTT effects should be considered as a fundamental constraint in our perception, and consequently in physics, rather than as a convenient explanation for isolated phenomena.
Given that our perception is filtered through LTT effects, we have to deconvolute them from our perceived reality in order to understand the nature of the absolute, physical reality. This deconvolution, however, results in multiple solutions. Thus, the absolute, physical reality is beyond our grasp, and any assumed properties of the absolute reality can only be validated through how well the resultant perceived reality agrees with our observations. In this article, we assumed that the underlying reality obeys our intuitively obvious classical mechanics and asked the question how such a reality would be perceived when filtered through light travel time effects. We demonstrated that this particular treatment could explain certain astrophysical and cosmological phenomena that we observe.
The coordinate transformation in SR can be viewed as a redefinition of space and time (or, more generally, reality) in order to accommodate the distortions in our perception of motion due to light travel time effects. One may be tempted to argue that SR applies to the “real” space and time, not our perception. This line of argument begs the question, what is real? Reality is only a cognitive model created in our brain starting from our sensory inputs, visual inputs being the most significant. Space itself is a part of this cognitive model. The properties of space are a mapping of the constraints of our perception.
The choice of accepting our perception as a true image of reality and redefining space and time as described in special relativity indeed amounts to a philosophical choice. The alternative presented in the article is inspired by the view in modern neuroscience that reality is a cognitive model in the brain based on our sensory inputs. Adopting this alternative reduces us to guessing the nature of the absolute reality and comparing its predicted projection to our real perception. It may simplify and elucidate some theories in physics and explain some puzzling phenomena in our universe. However, this option is yet another philosophical stance against the unknowable absolute reality.
Are Radio Sources and Gamma Ray Bursts Luminal Booms?
This article was published in the International Journal of Modern Physics D (IJMP–D) in 2007. It soon became the Top Accessed Article of the journal by Jan 2008.
Although it might seem like a hard core physics article, it is in fact an application of the philosophical insight permeating this blog and my book.
This blog version contains the abstract, introduction and conclusions. The full version of the article is available as a PDF file.
Journal Reference: IJMP-D Vol. 16, No. 6 (2007) pp. 983–1000.
.
Abstract
The softening of the GRB afterglow bears remarkable similarities to the frequency evolution in a sonic boom. At the front end of the sonic boom cone, the frequency is infinite, much like a Gamma Ray Burst (GRB). Inside the cone, the frequency rapidly decreases to infrasonic ranges and the sound source appears at two places at the same time, mimicking the double-lobed radio sources. Although a “luminal” boom violates the Lorentz invariance and is therefore forbidden, it is tempting to work out the details and compare them with existing data. This temptation is further enhanced by the observed superluminality in the celestial objects associated with radio sources and some GRBs. In this article, we calculate the temporal and spatial variation of observed frequencies from a hypothetical luminal boom and show remarkable similarity between our calculations and current observations.
Introduction
A sonic boom is created when an object emitting sound passes through the medium faster than the speed of sound in that medium. As the object traverses the medium, the sound it emits creates a conical wavefront, as shown in Figure 1. The sound frequency at this wavefront is infinite because of the Doppler shift. The frequency behind the conical wavefront drops dramatically and soon reaches the infrasonic range. This frequency evolution is remarkably similar to afterglow evolution of a gamma ray burst (GRB).
Gamma Ray Bursts are very brief, but intense flashes of rays in the sky, lasting from a few milliseconds to several minutes, and are currently believed to emanate from cataclysmic stellar collapses. The short flashes (the prompt emissions) are followed by an afterglow of progressively softer energies. Thus, the initial rays are promptly replaced by X-rays, light and even radio frequency waves. This softening of the spectrum has been known for quite some time, and was first described using a hypernova (fireball) model. In this model, a relativistically expanding fireball produces the emission, and the spectrum softens as the fireball cools down. The model calculates the energy released in the region as — ergs in a few seconds. This energy output is similar to about 1000 times the total energy released by the sun over its entire lifetime.
More recently, an inverse decay of the peak energy with varying time constant has been used to empirically fit the observed time evolution of the peak energy using a collapsar model. According to this model, GRBs are produced when the energy of highly relativistic flows in stellar collapses are dissipated, with the resulting radiation jets angled properly with respect to our line of sight. The collapsar model estimates a lower energy output because the energy release is not isotropic, but concentrated along the jets. However, the rate of the collapsar events has to be corrected for the fraction of the solid angle within which the radiation jets can appear as GRBs. GRBs are observed roughly at the rate of once a day. Thus, the expected rate of the cataclysmic events powering the GRBs is of the order of — per day. Because of this inverse relationship between the rate and the estimated energy output, the total energy released per observed GRB remains the same.
If we think of a GRB as an effect similar to the sonic boom in supersonic motion, the assumed cataclysmic energy requirement becomes superfluous. Another feature of our perception of supersonic object is that we hear the sound source at two different location as the same time, as illustrated in Figure 2. This curious effect takes place because the sound waves emitted at two different points in the trajectory of the supersonic object reach the observer at the same instant in time. The end result of this effect is the perception of a symmetrically receding pair of sound sources, which, in the luminal world, is a good description of symmetric radio sources (Double Radio source Associated with Galactic Nucleus or DRAGN).
Radio Sources are typically symmetric and seem associated with galactic cores, currently considered manifestations of space-time singularities or neutron stars. Different classes of such objects associated with Active Galactic Nuclei (AGN) were found in the last fifty years. Figure 3 shows the radio galaxy Cygnus A, an example of such a radio source and one of the brightest radio objects. Many of its features are common to most extragalactic radio sources: the symmetric double lobes, an indication of a core, an appearance of jets feeding the lobes and the hotspots. Some researchers have reported more detailed kinematical features, such as the proper motion of the hotspots in the lobes.
Symmetric radio sources (galactic or extragalactic) and GRBs may appear to be completely distinct phenomena. However, their cores show a similar time evolution in the peak energy, but with vastly different time constants. The spectra of GRBs rapidly evolve from region to an optical or even RF afterglow, similar to the spectral evolution of the hotspots of a radio source as they move from the core to the lobes. Other similarities have begun to attract attention in the recent years.
This article explores the similarities between a hypothetical “luminal” boom and these two astrophysical phenomena, although such a luminal boom is forbidden by the Lorentz invariance. Treating GRB as a manifestation of a hypothetical luminal boom results in a model that unifies these two phenomena and makes detailed predictions of their kinematics.
Conclusions
In this article, we looked at the spatio-temporal evolution of a supersonic object (both in its position and the sound frequency we hear). We showed that it closely resembles GRBs and DRAGNs if we were to extend the calculations to light, although a luminal boom would necessitate superluminal motion and is therefore forbidden.
This difficulty notwithstanding, we presented a unified model for Gamma Ray Bursts and jet like radio sources based on bulk superluminal motion. We showed that a single superluminal object flying across our field of vision would appear to us as the symmetric separation of two objects from a fixed core. Using this fact as the model for symmetric jets and GRBs, we explained their kinematic features quantitatively. In particular, we showed that the angle of separation of the hotspots was parabolic in time, and the redshifts of the two hotspots were almost identical to each other. Even the fact that the spectra of the hotspots are in the radio frequency region is explained by assuming hyperluminal motion and the consequent redshift of the black body radiation of a typical star. The time evolution of the black body radiation of a superluminal object is completely consistent with the softening of the spectra observed in GRBs and radio sources. In addition, our model explains why there is significant blue shift at the core regions of radio sources, why radio sources seem to be associated with optical galaxies and why GRBs appear at random points with no advance indication of their impending appearance.
Although it does not address the energetics issues (the origin of superluminality), our model presents an intriguing option based on how we would perceive hypothetical superluminal motion. We presented a set of predictions and compared them to existing data from DRAGNs and GRBs. The features such as the blueness of the core, symmetry of the lobes, the transient and X-Ray bursts, the measured evolution of the spectra along the jet all find natural and simple explanations in this model as perceptual effects. Encouraged by this initial success, we may accept our model based on luminal boom as a working model for these astrophysical phenomena.
It has to be emphasized that perceptual effects can masquerade as apparent violations of traditional physics. An example of such an effect is the apparent superluminal motion, which was explained and anticipated within the context of the special theory of relativity even before it was actually observed. Although the observation of superluminal motion was the starting point behind the work presented in this article, it is by no means an indication of the validity of our model. The similarity between a sonic boom and a hypothetical luminal boom in spatio-temporal and spectral evolution is presented here as a curious, albeit probably unsound, foundation for our model.
One can, however, argue that the special theory of relativity (SR) does not deal with superluminality and, therefore, superluminal motion and luminal booms are not inconsistent with SR. As evidenced by the opening statements of Einstein’s original paper, the primary motivation for SR is a covariant formulation of Maxwell’s equations, which requires a coordinate transformation derived based partly on light travel time (LTT) effects, and partly on the assumption that light travels at the same speed with respect to all inertial frames. Despite this dependence on LTT, the LTT effects are currently assumed to apply on a space-time that obeys SR. SR is a redefinition of space and time (or, more generally, reality) in order to accommodate its two basic postulates. It may be that there is a deeper structure to space-time, of which SR is only our perception, filtered through the LTT effects. By treating them as an optical illusion to be applied on a space-time that obeys SR, we may be double counting them. We may avoid the double counting by disentangling the covariance of Maxwell’s equations from the coordinate transformations part of SR. Treating the LTT effects separately (without attributing their consequences to the basic nature of space and time), we can accommodate superluminality and obtain elegant explanations of the astrophysical phenomena described in this article. Our unified explanation for GRBs and symmetric radio sources, therefore, has implications as far reaching as our basic understanding of the nature of space and time.
Photo by NASA Goddard Photo and Video