Hi again,You raise a lot of interesting questions. Let me try to answer them one by one.
You’re saying that our observations of an object moving away from us would look identical in either an SR or Galilean context, and therefore this is not a good test for SR.
What I’m saying is slightly different. The coordinate transformation in SR is derived considering only receding objects and sensing it using radar-like round trip light travel time. It is then assumed that the transformation laws thus derived apply to all objects. Because the round trip light travel is used, the transformation works for approaching objects as well, but not for things moving in other directions. But SR assumes that the transformation is a property of space and time and asserts that it applies to all moving (inertial) frames of reference regardless of direction.
We have to go a little deeper and ask ourselves what that statement means, what it means to talk about the properties of space. We cannot think of a space independent of our perception. Physicists are typically not happy with this starting point of mine. They think of space as something that exists independent of our sensing it. And they insist that SR applies to this independently existing space. I beg to differ. I consider space as a cognitive construct based on our perceptual inputs. There is an underlying reality that is the cause of our perception of space. It may be nothing like space, but let’s assume, for the sake of argument, that the underlying reality is like Galilean space-time. How would be perceive it, given that we perceive it using light (one-way travel of light, not two-way as SR assumes)? It turns out that our perceptual space would have time dilation and length contraction and all other effect predicted by SR. So my thesis is that the underlying reality obeys Galilean space-time and our perceptual space obeys something like SR. (It is possible that if I assume that our perception uses two-way light travel, I may get SR-like transformation. I haven’t done it because it seems obvious to me that we perceive a star, for instance, by sensing the light from it rather than flashing a light at it.)
This thesis doesn’t sit well with physicists, and indeed with most people. They mistake “perceptual effects” to be something like optical illusions. My point is more like space itself is an illusion. If you look at the night sky, you know that the stars you see are not “real” in the sense that they are not there when you are looking at them. This is simply because the information carrier, namely light, has a finite speed. If the star under observation is in motion, our perception of its motion is distorted for the same reason. SR is an attempt to formalize our perception of motion. Since motion and speed are concepts that mix space and time, SR has to operate on “space-time continuum.” Since SR is based on perceptual effects, it requires an observer and describes motion as he perceives it.
But are you actually saying that not a single experiment has been done with objects moving in any other direction than farther away? And what about experiments on time dilation where astronauts go into space and return with clocks showing less elapsed time than ones that stayed on the ground? Doesn’t this support the ideas inherent in SR?
Experiments are always interpreted in the light of a theory. It is always a model based interpretation. I know that this is not a convincing argument for you, so let me give you an example. Scientists have observed superluminal motion in certain celestial objects. They measure the angular speed of the celestial object, and they have some estimate of its distance from us, so they can estimate the speed. If we didn’t have SR, there would be nothing remarkable about this observation of superluminality. Since we do have SR, one has to find an “explanation” for this. The explanation is this: when an object approaches us at a shallow angle, it can appear to come in quite a bit faster than its real speed. Thus the “real” speed is subluminal while the “apparent” speed may be superluminal. This interpretation of the observation, in my view, breaks the philosophical grounding of SR that it is a description of the motion as it appears to the observer.
Now, there are other observations of where almost symmetric ejecta are seen on opposing jets in symmetric celestial objects. The angular speeds may indicate superluminality in both the jets if the distance of the object is sufficiently large. Since the jets are assumed to be back-to-back, if one jet is approaching us (thereby giving us the illusion of superluminality), the other jet has bet receding and can never appear superluminal, unless, of course, the underlying motion is superluminal. The interpretation of this observation is that the distance of the object is limited by the “fact” that real motion cannot be superluminal. This is what I mean by experiments being open to theory or model based interpretations.
In the case of moving clocks being slower, it is never a pure SR experiment because you cannot find space without gravity. Besides, one clock has to be accelerated or decelerated and GR applies. Otherwise, the age-old twin paradox would apply.
I know there have been some experiments done to support Einstein’s theories, like the bending of light due to gravity, but are you saying that all of them can be consistently re-interpreted according to your theory? If this is so, it’s dam surprising! I mean, no offense to you – you’re obviously a very bright individual, and you know much more about this stuff than I do, but I’d have to question how something like this slipped right through physicists’ fingers for 100 years.
These are gravity related questions and fall under GR. My “theory” doesn’t try to reinterpret GR or gravity at all. I put theory in inverted quotes because, to me, it is a rather obvious observation that there is a distinction between what we see and the underlying causes of our perception. The algebra involved is fairly simple by physics standards.
Supposing you’re right in that space and time are actually Galilean, and that the effects of SR are artifacts of our perception. How then are the results of the Michelson-Morley experiments explained? I’m sorry if you did explain it in your book, but it must have flown right over my head. Or are we leaving this as a mystery, an anomaly for future theorists to figure out?
I haven’t completely explained MMX, more or less leaving it as a mystery. I think the explanation hinges on how light is reflected off a moving mirror, which I pointed out in the book. Suppose the mirror is moving away from the light source at a speed of v in our frame of reference. Light strikes it at a speed of c-v. What is the speed of the reflected light? If the laws of reflection should hold (it’s not immediately obvious that they should), then the reflected light has to have a speed of c-v as well. This may explain why MMX gives null result. I haven’t worked out the whole thing though. I will, once I quit my day job and dedicate my life to full-time thinking.
My idea is not a replacement theory for all of Einstein’s theories. It’s merely a reinterpretation of one part of SR. Since the rest of Einstein’s edifice is built on this coordinate transformation part, I’m sure there will be some reinterpretation of the rest of SR and GR also based on my idea. Again, this is a project for later. My reinterpretation is not an attempt to prove Einstein’s theories wrong; I merely want to point out that they apply to reality as we perceive it.
Overall, it was worth the $5 I payed. Thanks for the good read. Don’t take my questions as an assault on your proposal – I’m honestly in the dark about these things and I absolutely crave light (he he). If you could kindly answer them in your spare time, I’d love to share more ideas with you. It’s good to find a fellow thinker to bounce cool ideas like this off of. I’ll PM you again once I’m fully done the book. Again, it was a very satisfying read.
Thanks! I’m glad that you like my ideas and my writing. I don’t mind criticism at all. Hope I have answered most of your questions. If not, or if you want to disagree with my answers, feel free to write back. Always a pleasure to chat about these things even if we don’t agree with each other.
– Best regards,
– Manoj